Pavel Berkovich

Education

- 2018–2019 University College London, MSc Computational Statistics and Machine Learning Courses include: Deep & Reinforcement Learning (DeepMind), Statistical Data Analysis, Unsupervised Learning & Approximate Inference (Gatsby Unit), Supervised Learning Thesis: Variational Non-Parametric Modelling of Spatiotemporal Signals (top 3% in class)
- 2013–2016 University of Cambridge, BA (Hons.) Computer Science Courses include: Stochastic Modelling, Artificial Intelligence, Numerical Methods, Algorithms, Digital Signal Processing, Fourier Methods, Information Theory, Information Retrieval

Publications

arXiv GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian Process Models, 2nd Symposium on Advances in Approximate Bayesian Inference, Vancouver, 2019 (preprint)

Professional Experience

- May 2019- **Invenia Labs**, *Gaussian Process Forecasting*, Machine Learning Researcher present Using multi-output Gaussian Processes to explore dynamics of electric grids
- Aug 2016- Morgan Stanley, Securitized Products Group, European Risk Modelling
 Aug 2018 Present-value pricing and predictive risk modelling for European asset-backed securities
- Jun-Aug Morgan Stanley, *FX Electronic Market Making*, Summer Intern 2015 Improved latency of high-frequency DMA system, reducing transaction costs for clients
- Jun-Aug University of Cambridge, Computer Laboratory, Systems Research Intern 2014 Modelling and simulation of communication protocols in distributed IoT systems

Technical Expertise

Data Analysis

Statistics GAMs, MLE, Hypothesis Testing, Stochastic Processes, MCMC, Resampling

Time-Series HMMs, State Space Models, Gaussian Processes, ARMA, (G)ARCH, VAR models

Machine Learning

Supervised Neural Networks, Kernel Methods, Decision Trees, Ensembles, SVMs, Online Methods Unsupervised Clustering, VAE, (P)PCA / FA, Mixture Models, ICA, LDA, t-SNE, Graphical Models Reinforcement Multi-Armed Bandits, Policy-Gradient Methods, Markov Decision Processes, Q-Learning

Computing

Programming Python (PyTorch, Tensorflow, Keras, Pandas), Julia, C++, R, Kdb+/Q, SQL, MATLAB Tools Excel, Jupyter, Git, Unix, Bokeh, LATEX, PowerPoint, HTML/CSS, Markdown, BUGS

Selected Projects

- Adapting Google Brain's state-of-the-art Transformer seq2seq deep neural attention model to the task of automatically translating natural language to SQL queries
- Using HMMs to model the eruption pattern of the Old Faithful geyser
- Breaking substitution ciphers using the Metropolis-Hastings MCMC sampling algorithm
- Using GLMs to explain variations in level of nitrogen oxide in ambient air over time